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SUMMARY

An epidemic of obesity has affected large portions of the world, increasing the risk of developing many
different age-associated diseases, including cancer, cardiovascular disease, and diabetes. In contrast
with the prevailing notion that ‘‘a calorie is just a calorie,’’ there are clear differences, within and between
individuals, in the metabolic response to different macronutrient sources. Recent findings challenge this
oversimplification; calories from different macronutrient sources or consumed at different times of day
have metabolic effects beyond their value as fuel. Here, we summarize discussions conducted at a recent
NIH workshop that brought together experts in calorie restriction, macronutrient composition, and time-
restricted feeding to discuss how dietary composition and feeding schedule impact whole-bodymetabolism,
longevity, and healthspan. These discussions may provide insights into the long-sought molecular mecha-
nisms engaged by calorie restriction to extend lifespan, lead to novel therapies, and potentially inform the
development of a personalized food-as-medicine approach to healthy aging.
INTRODUCTION

For the last century, calorie restriction (CR) has remained the

gold standard for interventions that can extend the lifespan

and healthspan of model organisms including flies, rodents,

and even nonhuman primates.1 While some metabolic benefits

of CR in healthy non-obese humans have been identified,2–4 his-
torically, a CR diet has been viewed as too abstemious and diffi-

cult to be broadly adopted by humans. As a result, one of the

‘‘holy grails’’ of aging research is finding a way to harness the

benefits of CR without the need to restrict calories.5,6

Despite several successes in identifying molecules that

extend fly and mouse lifespan, including rapamycin, an inhibitor

of the mTOR (mechanistic target of rapamycin) protein
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kinase,7–12 we do not yet have ‘‘CR-in-a-pill,’’ and there remain

deep mysteries surrounding the physiological and molecular

mechanisms by which CR functions. For example, while CR

and similar diets may converge to reduce activity of mTOR,13

there are substantial differences between CR and rapamycin—

in flies, rapamycin extends lifespan across a broad range of

nutrient intakes,12 while in mice the molecular impacts of CR

and rapamycin treatment are extremely different.14–16 In addi-

tion, putative geroprotectors may have side effects in humans

that limit their potential benefits—for example, while rapamycin

robustly extends mouse lifespan, it is FDA-approved as an

immunosuppressant, andmost laboratory studies are performed

in barrier facilities with minimal or no pathogen burden. Rapamy-

cin also causes metabolic disruptions that may be deleterious in

humans, and thus the safety of putative geroprotectors in hu-

mans must be assessed, as well as their potential efficacy and

utility across biological aging.17

In contrast to this limited track record, CR and dietary interven-

tions that seek to mimic some of the benefits of CR—including

restriction of protein or specific amino acids, ketogenic diets,

and time-restricted feeding (TRF)—have a strong pre-clinical

track record in model organisms, strong associations with

decreased rates of age-related disease and mortality in human

longitudinal studies, and emerging data from observational

human studies and randomized clinical trials.1 As such, while

some have criticized so-called anti-aging diets, many re-

searchers, including those represented at a recent NIH work-

shop (Table 1), believe that there is much to learn from the study

of dietary interventions that improve healthspan in both model

organisms and in humans.

Here, we summarize the presentations and discussions that

took place at an NIH workshop on ‘‘Dietary Composition,

Time-Restricted Feeding and AssociatedMetabolic Reprogram-

ming in Healthspan and Longevity Regulation’’ on August 22–23,

2022. Insights into the dietary regulation of aging and health dis-

cussed at this workshop across a range of organisms are

summarized in part in Figure 1. We provide a list of provocative

questions that will need to be considered by future research

(Box 1) to address challenges in the field (Figure 2). Finally, we

discuss how the studies discussed here and future work will pro-

vide new insights into the molecular regulation of aging and age-

related diseases (Figure 3), and may also help optimize dietary

interventions that benefit health and longevity for all humans.

MEETING REPORT

CR studies in nonhuman primates
CR strongly preserves healthspan and extends the lifespan of

diverse model organisms.53,66–69 To assess the applicability of

these studies to humans, CR has been studied in rhesus ma-

caques, a nonhuman primate that shares 93%genetic homology

with humans,70 for over 30 years. Two separate studies, based at

the NIA and the University of Wisconsin-Madison (UW), reported

different CR effects on overall lifespan. Specifically, survival time

was improved in UW CR monkeys compared to their controls,

while NIA CR monkeys experienced no survival advantage

compared to their controls.54,55 Careful consideration of the

similar but distinct study designs pointed to features that may

account for this effect, including the age of onset, diet composi-
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tion, and feeding regimen, including the time of day of feeding

and the length of time between meals.53,56

At the workshop, Dr. Julie Mattison discussed follow-up ro-

dent studies at the NIA, which imposed the monkey diets and

feeding strategies on mice and discovered that an increased

fasting duration between meals improved health and survival in-

dependent of diet composition.56 Increased fasting time was

also associated with the upregulation of genomic pathways

associated with a pro-longevity response.57 The importance of

considering time of feeding and fasting in the CR setting was

highlighted in a recent study using automated feeders, which

found that CR mice consumed their entire day’s meal in about

2 h; a typical CR regimen thus unintentionally imposes a long

fast between meals.71 Feeding mice a low-energy diet that elim-

inated this fasting period blocked the positive effects of CR on

insulin sensitivity, frailty, cognitive performance, and longevity,72

demonstrating that the prolonged time between meals is

required for many of the benefits of a CR diet. Moreover, daily

fasting alone—imposed upon mice by making them eat an ad

libitum quantity of food each day in only 3 h—recapitulated the

metabolic effects and many of the transcriptional effects of a

CR diet in liver and inguinal white adipose tissue (iWAT).72

Dr. Mattison concluded by noting that, while rhesus monkeys

are a valuable translational model for human aging and share

many of the characteristic phenotypes, there are a number of

‘‘monkey wrenches.’’ These include many of the same caveats

found in rodent studies, such as the need to account for sex dif-

ferences, age of onset, site differences, diet composition and

variability between food batches, treatment of the control group,

and the feeding regimen. Additionally, the relatively long lifespan

of rhesus macaques poses a challenge for longitudinal studies

and highlights the need for validating biomarkers. Yet despite

the complexities, Dr. Mattison concluded that nonhuman pri-

mates offer our greatest opportunity to better understand aging

and age-related disease processes.

CR studies in humans/CALERIE
Despite the beneficial effects of 40%CR in many strains of mice,

it has been observed that this degree of restriction can lead to

reduced lifespan in some strains of mice.73 The negative effects

of CR include increased mortality from influenza virus,74 death

frompolymicrobial sepsis,75 impaired immunity toparasitic infec-

tions,76 and the death of thymocytes77 in mice. Four years of CR

in primates has been shown to reduce immune response.78 Thus,

a great unknown is whether CR can delay aging without causing

immunological tradeoffs, prevent age-related diseases, and

extend lifespan in humans. This is particularly relevant now, as

the popular press surrounding the results of CR in model organ-

isms has led an increasing number of people to adopt CR or CR-

mimetic strategies for themselves.

Almost two decades ago, a diverse set of NIH-funded re-

searchers undertook the ambitious CALERIE (Comprehensive

Assessment of Long-Term Effects of Reducing Intake of Energy)

studies (CALERIE-I and CALERIE-II) to determine if 2 years of a

CR diet would slow aging and protect against age-related dis-

eases in humans.79,80 Dr. Vishwa Deep Dixit gave an update at

the workshop on his laboratory’s recent work from CALERIE-II

participants. Dixit and colleagues hypothesized that negative en-

ergy balance in humans, without systems tradeoffs, will reveal



Table 1. NIH workshop on ‘‘Dietary Composition, Time-Restricted Feeding and Associated Metabolic Reprogramming in Healthspan

and Longevity Regulation,’’ August 22–23, 2022

Talk title Speaker Key references

Session 1: Nutrient sensing, macronutrient restriction, and dietary composition manipulation in healthspan and longevity regulation

When a calorie is not just a calorie: The regulation of

healthy aging by dietary protein and branched-

chain amino acids

Dudley Lamming, PhD Fontana et al., Richardson et al., Yu et al.,

Green et al., and Flores et al.18,19–22

Effects of methionine restriction on metabolic and

cognitive health

Mirela Delibegovic, PhD Lees et al.23

The influence of ketogenic diets on lifespan and

healthspan

Jon Ramsey, PhD Roberts et al., Pathak et al., Zhou et al., and

Wallace et al.24,25–27

The impact of ketosis on gene expression in

multiple tissues of mice

Gino Cortopassi, PhD Tomilov et al. and Hui et al.28,29

Session IIa: Interactions between circadian rhythms and dietary interventions in healthspan promotion

Bioenergetics and the healthful response to time

restricted feeding

Joseph Bass, MD, PhD Hepler et al.30

Time-restricted feeding and circadian mediated

regulation of age-linked cardiometabolic disorders

Girish Melkani, PhD Gill et al., Villanueva et al., and Livelo et al.31,32,33

Mechanisms of metabolic remodeling during

intermittent fasting

Rajat Singh, PhD Martinez-Lopez et al.34,35

A dietary molecule as TRF mimetic to promote

healthy aging

Zheng Chen, PhD He et al., Nohara et al., Kim et al., and Wirianto

et al.36–40

Session IIb: Interactions between circadian rhythms and dietary interventions in healthspan promotion

Time to live healthier and longer? The tale of mice

on time-restricted feeding

Amandine Chaix, PhD Hatori et al. and Chaix et al.41–43

Circadian regulation of Drosophila feeding

behavior

William Ja, PhD Ulgherait et al. and Murphy et al.44,45

You are when you eat: Mechanisms underlying

lifespan extension due to intermittent time-

restricted feeding in Drosophila

Michele Shirasu-Hiza, PhD Ulgherait et al.44

Session III: Macronutrient manipulation in tissue homeostasis and organ function

Influence of diet and nutrient abundance on

mammalian intestinal homeostasis

Maria Mihaylova, PhD Keller et al., Mihaylova et al., and Yilmaz

et al.46–48

Branched-chain amino acids selectively promote

cardiac hypertrophy

Mary Latimer, PhD Latimer et al.49

Immunometabolic checkpoints of inflammation:

Lessons from CALERIE

Vishwa Deep Dixit, DVM, PhD Spadaro et al. and Ryu et al.3,50

Session IV: Translational promises and challenges of dietary interventions to enhance human healthspan

Nutrient and metabolic determinants of human

health span—from bench to bedside and back

Anna Thalacker-Mercer, PhD Thalacker-Mercer et al. and Gheller et al.51,52

Throwing a monkey wrench into translational diet

studies

Julie Mattison, PhD Colman et al., Mattison et al., Mitchell et al., and

Aon et al.53,54–57

Opportunities and challenges in incorporating

concepts from circadian rhythms and time-

restricted eating into lifestyle to increase human

healthspan

Satchidananda Panda, PhD Gill et al., Gupta et al., Manoogian et al., Chow

et al., Wilkinson et al., Phillips et al., Malaeb et al.,

and Fleischer et al.58–64,65

Workshop agenda. Workshop schedule, with talk titles, speakers, and key references and background reading.
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new immunometabolic checkpoints to lower inflammation and

enhance healthspan. Analyses of healthy humans aged 25–45

years of age revealed that sustained CR for 2 years enhanced

thymic function, as measured by reduction of ectopic lipid;

increased functional thymic volume; and increased recent

thymic emigrants in CD4 and CD8 T cells in blood.3 Analyses

of abdominal subcutaneous adipose tissue revealed that CR in

humans activates transcriptional programs implicated in
mitochondrial metabolism, anti-inflammatory responses, and

longevity (Figure 1). His laboratory identified the gene encoding

macrophage-derived protein PLA2G7 (group VII A platelet acti-

vating factor acetylhydrolase) as significantly inhibited by CR in

humans.3 Using mouse models, Dr. Dixit’s lab showed that

reducing PLA2G7 had beneficial effects, decreasing inflammag-

ing via inhibition of NLRP3 inflammasome and protecting mice

from thymic involution and metabolic dysfunction.3
Cell Metabolism 35, July 11, 2023 3



Figure 1. Key findings from discussed
studies on caloric and nutrient restriction
paradigms in fly and mammalian studies
This schematic summarizes some of the key take-
aways from presenters of the NIH workshop, sum-
marizing major findings of studies involving time-
restricted feeding (TRF), fasting, and other feeding
paradigms across files, mice, nonhuman primates
(NHPs), and humans. In flies, several feeding para-
digms were described. TRF in flies can reduce tri-
glyceride content and improve cardiac and skeletal
muscle health under aging and obesity. Intermittent
fasting regimen (iTRF) from 10 to 40 days of age
extends lifespan of flies 10%–15%; however, appli-
cation too early or late in life can lead to negative
consequences for fly health. Additionally, iTRF can
delay age-related climbing inability and intestinal
dysfunction. In mice, many different time-restricted
and nutrient type-restricted studies were described.
In particular, the fasting component of caloric
restriction (CR) is necessary for many of the im-
provements observed with CR like insulin sensitivity,
lifespan extension, and reduced frailty. Fasting can
improve intestinal stem cell function, and serine and
glycine deprivation affects muscle stem cells. TRF
can protect from obesogenic, Western diets, and
intermittent ketogenic diets improve healthspan
measurements. Twice aday feeding in the dark cycle
(TAN) remodels metabolic tissues and increases
energy expenditure. Multiple amino acid-restricted
dietswere discussed; restriction of eithermethionine
or branched-chain amino acids (BCAAs) improves
metabolic health and cognition and extends
lifespan. In NHPs, meal spacing matters for
healthspan measurements, and fasting in between
meals can improve survival. In humans, adherence
to various forms of CR and TRF can be challenging.
While some healthy people with obesity can
tolerate 4–12 h feeding windows, shorter windows
do not produce long-term adherence. Restricting
eating to 12 h also did not produce significant
improvements in cardiovascular health. CR
sustained over 2 years can improve thymic function
and reduce oxidative damage; however, long-term
effects of extended CR on immune cell function
remain to be further elucidated (parts of this figure
were created with BioRender.com).
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Dr. Dixit also reported on the identification of aCR-inhibited adi-

pokine, SPARC (matricellular protein, secreted protein acidic and

rich incysteine).SPARC isacritical regulator of inflammation, con-

verting anti-inflammatory macrophages into a pro-inflammatory

phenotype. In mice, depletion of adipocyte SPARC decreased in-

flammaging and extended healthspan.50 Dr. Dixit concluded by

noting thathis labhasdemonstrated thatwhile it remainsunknown

if CR extends human lifespan, CR is clearly relevant to human

physiology and immunobiology and may be an important way to

harness immunometabolic checkpoints of inflammation and

longevity. These data alsodemonstrated that the simple reduction

of caloriesby15%,without alteration inmeal timings or frequency,

was sufficient to reduce oxidative stress and inflammation and

improve metabolic function in humans.

Protein and amino acid restriction
CR proportionally decreases the consumption of dietary macro-

nutrients, including protein, and it has long been hypothesized

that reduced intake of specific macronutrients might account

for the benefits of a CR diet. Recently there has been great inter-

est in the role of dietary protein. Most dietary advice for humans
4 Cell Metabolism 35, July 11, 2023
recommends increased protein consumption, especially for

active individuals and those who are middle aged or elderly.81,82

However, long-term large prospective and retrospective clinical

trials have shown that dietary protein intake is correlated with

rates of multiple age-related diseases, including cancer, cardio-

vascular disease, and diabetes in humans, as well as increased

mortality in those under 65 years of age.83–85 Two short-term

randomized clinical trials of protein restriction (PR) have found

that PR reduces weight and adipose mass and improve blood

glucose regulation in overweight individuals and people with

type 2 diabetes.18,86

Restriction of protein has been shown to extend the lifespan of

both flies87–90 and rodents.67,91 Restriction of dietary protein also

improves metabolic health in mice and rats.91–93 One potential

contributor to the variability in human studies has been variation

in protein source, which has been shown to affect longevity in

rats.94 A possible explanation for the effect of different protein

sources on health and longevity is that different protein sources

have distinct amino acid profiles. This naturally begs the ques-

tion of which, if any, amino acids reduced in a PRdiet are respon-

sible for the benefits of a PR diet.

http://BioRender.com


Box 1. Provocative questions in dietary interventions to promote healthspan and longevity

NUTRIENT SENSING, MACRONUTRIENT RESTRICTION, AND DIETARY COMPOSITION MANIPULATION

1. Which dietary amino acids, when restricted or supplemented, promote increased healthspan and/or longevity?

2. How does dietary protein quantity and quality interact with the level and type of other dietary macronutrients to influence

healthspan and longevity?

3. How do sex and genetic background contribute to the response to altered dietary macronutrient composition, and can we

identify genetic loci that define the response to specific dietary macronutrients?

4. Do changes in dietary macronutrients promote healthy aging through engaging with canonical signaling pathways (mTOR,

GCN2, FGF21)?

5. Does the timing of macronutrient intake contribute to the effects of those macronutrients on healthspan and longevity?

6. Do ketone bodies contribute to increases in longevity and healthspan with calorie restriction, intermittent fasting, and time-

restricted feeding?

7. Are certain dietary nutrients better utilized and digested at specific circadian times?

CIRCADIAN RHYTHMS AND DIETARY INTERVENTIONS IN HEALTHSPAN PROMOTION

1. Are the effects of time-restricted-feeding interventions mediated by prolonged fasting between meals or reinforced circadian

cycles?

2. How do natural feeding patterns, which can vary greatly between and within individuals day-to-day, and the mechanisms that

govern them influence responses to dietary interventions?

3. Why do circadian disruptions, including sleep disruption, affect whole-body metabolism and healthspan?

4. Is circadian resilience (e.g., both amplitude enhancement and phase adaptation) a key mechanism underlying the benefits of

dietary restriction/fasting on healthspan, and if so, what regulators are involved?

5. How do different time-restricted-feeding regimens affect microbiome composition and its metabolites?

MACRONUTRIENT MANIPULATION IN TISSUE HOMEOSTASIS AND ORGAN FUNCTION

1. Which lipids and lipid-derived molecules promote or hinder healthspan?

2. Do macronutrient requirements change with age? Do older animals or people need more proteins and/or dietary fiber?

3. What are the metabolic and energetic demands of different tissues and how does aging impact the metabolic flexibility across

tissues?

4. Do nutrient transport and uptake change with age?

5. How do different cell types within the same tissue shape themicroenvironment and determine their metabolic preferences and

flexibility?

TRANSLATIONAL PROMISES AND CHALLENGES OF DIETARY INTERVENTIONS TO ENHANCE HUMAN
HEALTHSPAN

1. Can alterations in dietary macronutrients or time of feeding promote healthspan in nonhuman primates?

2. Are the effects of time-restricted-feeding interventions in humansmediated by prolonged fasting betweenmeals and/or reduc-

tions in calorie intake?

3. How do interventions targeting quality, quantity, and timing of nutrition during pregnancy and/or lactation affect maternal

health and the child’s long-term health?

4. Time-restricted feeding often reduces calorie intake, which can be undesirable for older adults at risk for sarcopenia. Can time-

restricted feeding with optimum nutrition reduce frailty and improve healthspan among older adults?

5. How do sex differences and sex hormones affect the response to nutrient restrictions and dietary manipulation? Domales and

females, or pre-menopause and post-menopause women, need different dietary interventions to maximize healthspan?

6. How do exercise and energy balance impact the beneficial effects of dietary interventions?

ll
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Figure 2. Challenges for translating dietary
and pharmaceutical interventions into the
clinic
(1) Genetic background and sex play a major role in
the response to dietary and pharmaceutical in-
terventions in the pre-clinical studies discussed
here; (2) we are only beginning to understand the
physiological and molecular mechanisms engaged
by these interventions, and many questions remain;
and (3) while it is clear that timing and diet compo-
sition are critically important regulators of metabolic
health, the intersection of timing and diet composi-
tion has not been deeply explored. Finally, age,
obesity, and daily energy expenditure may be
important factors in the response to different dietary
interventions, and some interventions may be less
beneficial or even deleterious in older individuals.
This figure was created with BioRender.com.
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Methionine restriction
Many researchers have attributed the benefits of a vegan diet to

the consumption of plant proteins that are naturally lower in the

essential amino acidmethionine than redmeat,95,96 although this

has been disputed.97 As discussed by Dr. Mirela Delibegovic,

methionine restriction (MR) in rodents—achieved by reducing

methionine levels from 0.86% of the diet to 0.172%—dramati-

cally decreases body weight and adiposity, improves insulin

sensitivity relative to animals on a control diet, and extends life-

span.98–100 MR and methionine-depleted diets have also shown

efficacy in restoring metabolic health to genetic and diet-

induced models of obesity, promoting reduced weight and

adiposity, decreasing or reversing hepatic steatosis, and

normalizing glucose homeostasis.101–104 Beneficial metabolic

effects, notably increased fat oxidation, have also been seen in

short-term clinical trials of MR in humans.105

However, while in this respect MR mimics the effects of a CR

diet,MR-fedmice have ad libitum access to food. TheDelibegovic

lab has shown that MR in 12-month-old mice significantly in-

creases food intake, yet completely reverses age-induced alter-

ations in body weight, adiposity, physical activity, and glucose

tolerance to the levels observed in healthy 2-month-old control-

fedmice.23 Similarly, amethionine-depleteddiet leads to dramatic

reductions in body weight and adiposity and improved glucose

tolerance in both 6-month-old and 22-month-old mice.106

In unpublished work discussed by Dr. Delibegovic, her labora-

tory assessed the ability of MR to improve cognitive and motor

function in aged mice using rotarod and Y-maze tests. As ex-

pected, aging led to decreased locomotor function and cognitive

performance in control-diet-fed mice; relative to these controls,

aged MR-fed mice had improved locomotor and cognitive per-

formance. They next asked if MR could improve cognitive func-

tion and performance in a mouse model of Alzheimer’s disease.

Using Tg4510 mice, a model of frontotemporal dementia with

overexpression of mutant human Tau protein, they found that

MR significantly improved performance in behavioral tests,

without alterations inmetabolic outcomes, suggesting the cogni-

tive benefits of MR are directly regulated by the diet (Figure 1).
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Branched-chain amino acid
restriction
The branched-chain amino acids (BCAAs)

leucine, isoleucine, and valine are
elevated in the blood of both humans and rodent models of

obesity and diabetes and can be predictive of the future develop-

ment of type 2 diabetes.107,108 At the workshop, Dr. Dudley

Lamming discussed recent work from his laboratory examining

the effects of BCAA restriction on the healthspan and longevity

of mice. The Lamming lab has found that restricting dietary

BCAAs by 67% promoted metabolic health in wild-type

C57BL/6J mice when started in midlife and led to a 30%

increase in lifespan and a reduction in frailty in male, but not

female, wild-type mice when they underwent lifelong feeding.19

BCAAs are strong agonists of mTORC1, and BCAA-restricted

male, but not female, mice had reducedmTORC1 activity in skel-

etal muscle and liver.

While the BCAAs have typically been considered as a group,

emerging evidence suggests that each of the three BCAAs has

distinct metabolic roles. Dr. Lamming’s group recently showed

that dietary isoleucine is a key regulator of metabolic health,

and that reduction of dietary isoleucine is both necessary and

sufficient for the metabolic benefits of a PR diet.20 At the work-

shop, Dr. Lamming highlighted unpublished work showing that

specifically restricting isoleucine by 67% reduces frailty and ex-

tends the lifespan of both male and female mice.21 Further, Dr.

Lamming’s recent work and work from other groups have found

that specifically restricting valine also benefits the metabolic

health of mice109 (Figure 1).

While the benefits of BCAA restriction for the healthy aging of

humans remains unknown, recent studies suggest that short-

term restriction of BCAAs promotes insulin sensitivity.110 Dietary

levels of isoleucine are associated with body mass index in

humans,20 while blood levels of isoleucine are predictive of

increased mortality risk.111 Dr. Lamming suggested that

reducing dietary BCAAs or isoleucine, or developing pharma-

ceuticals that mimic these effects, may hold potential as a trans-

latable intervention to promote healthy aging.

Interestingly, the time of day when BCAAs are consumed may

impact their effect on health. Dr. Mary Latimer discussed her

research on how the time of day of BCAA consumption influ-

ences cardiometabolic and cardiovascular outcomes. She found

http://BioRender.com


Figure 3. Molecular mechanisms of dietary restriction
Dietary restriction encompasses reduced consumption of macronutrients
such as carbohydrates and amino acids to alter their blood levels and, sub-
sequently, insulin and IGF levels. These changes are sensed across different
cell types and impinge on several conserved nutrient sensors, such as mTOR
complex 1 (mTORC1) and AMP-activated protein kinase (AMPK). Reduced
mTORC1 activity, due to lower levels of certain amino acids, leads to
decreased protein synthesis and ribosomal biogenesis. AMPK acts as a
sensor of cellular energy by sensing changes in intracellular AMP, ADP, and
ATP levels. Glucose deprivation activates AMPK, which in turn can phos-
phorylate and regulate several downstream substrates. AMPK and mTORC1
both converge on regulating autophagy in opposing ways. AMPK-dependent
phosphorylation of Unc-51-like kinase 1 (ULK1) is required for mitophagy, a
specific type of autophagy that involves degrading damaged mitochondria
that may be impaired in aged tissues. Dietary restriction of carbohydrates or
overall CR can also reducemetabolic activity through PI3K and AKT pathways.
Reduced AKT activity will increase forkhead box protein O (Foxo)-dependent
transcriptional programs involved in glucose and lipid signaling. Additionally,
mTORC1 and AKT regulate sterol regulatory element-binding protein (SREBP)
1 and 2, which regulate fatty acid and cholesterol metabolism, respectively.
Inhibition of mTORC1 through rapamycin can mimic some of the beneficial
effects of dietary restriction, but it remains to be seen if rapamycin affects
different tissues and cell types to the same extent. This figure was created with
BioRender.com.
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that feeding mice a BCAA-enriched meal at the end of the active

period (i.e., the last 4 h of the dark phase) rapidly increased car-

diac protein synthesis and mass, as well as cardiomyocyte

size.49 In contrast, consuming an identical BCAA-enriched

meal at the beginning of the active period (i.e., first 4 h of the

dark phase) had no effect. Dr. Latimer also observed greater

activation of mTOR signaling in the heart by BCAAs fed at the

end of the active period. Pharmacological inhibition of mTOR

signaling with rapamycin blocked BCAA-induced augmentation

of cardiac mass and cardiomyocyte size, while repetitive con-

sumption of BCAA-enrichedmeals at the end of the active period

accelerated adverse cardiac remodeling and contractile

dysfunction in mice subjected to transverse aortic constriction.

Thus, in addition to the quantity of BCAAs consumed, the timing

of BCAA consumption has implications for cardiac health and

disease.
Restriction of other amino acids
Of the other common amino acids, dietary threonine and trypto-

phan have recently been shown to regulate expression of the en-

ergy balance hormone FGF21, and restriction of threonine has

been shown to retard the development of obesity-associated

metabolic dysfunction.112 Tryptophan restriction has also been

reported to extend the lifespan of mice and rats.113,114 Dr.

Lamming reported that his lab has found that histidine restriction

by 67% promotes leanness and metabolic health in young and

old aged male mice, but did not extend lifespan; moreover, his-

tidine-restricted mice have increased energy expenditure rela-

tive to control-fed animals, but this effect was not dependent

on FGF21.22

Dr. Anna Thalacker-Mercer discussed the reliance of skeletal

muscle stem/progenitor cells on the non-essential amino acids

serineandglycine.Supplementationwithglycine extends the life-

span of both male and female UM-HET3 mice, and perhaps of

rats,115,116 and Dr. Thalacker-Mercer previously demonstrated

that glycine has a positive relationship with glucose disposal

rate, a marker of insulin action, in humans.51 She discussed

recent work from her laboratory showing that with advancing

age, these amino acids are reduced in both human and rodent

models.52 Furthermore, Dr. Thalacker-Mercer’s group has found

that reduced serine or glycine availability impairs skeletal muscle

stem/progenitor cell proliferation and leads to pronounced

adipocyte accumulation in the skeletal muscle of aged mice

following injury, hallmarks of aging skeletal muscle.52 These re-

sults suggest that decreased serine and glycine availability in

advanced age may underlie age-related muscle deterioration.

Ketogenic diets
CR, intermittent fasting, and TRF are all dietary interventions that

include periods of fasting.117 In mice, postprandial blood ketone

levels can be significantly increased by 8 h of fasting,118 and

many scientists are interested in understanding how ketones

may influence aging. Dr. Jon Ramsey discussed multiple mech-

anisms by which the ketone b-hydroxybutyrate may influence

aging: by acting as an energy substrate and alternative to

glucose, through receptor-mediated effects on cells, through

protein acetylation or b-hydroxybutyrylation, or via inhibition of

histone deacetylases.119 In their studies, Dr. Ramsey’s group

has observed a 13.6% increase in median lifespan and a signif-

icant decrease in histiocytic sarcomas in mice maintained on a

ketogenic diet.24 In addition, motor function and memory were

improved in aged mice consuming a ketogenic versus control

diet.24 Studies of mice on an intermittent ketogenic diet fed every

other week also showed improvement in healthspan measure-

ments in aged animals.120

These initial ketogenic diet and aging studies were completed

in male mice, and a recent study showed that a ketogenic diet

started in middle-aged female mice may also produce benefits,

as demonstrated by increased spatial memory and exploratory

behavior and increasedmitochondrial mass in skeletal muscle.25

These results are consistent with studies of male mice reporting

increased mitochondrial number in gastrocnemius muscle26 and

an increase inmusclemitochondrial biogenesis and preservation

of skeletal muscle mass with advanced age in animals

consuming a ketogenic diet.27 This work supports the idea that

maintenance of skeletal muscle mass and mitochondria with
Cell Metabolism 35, July 11, 2023 7
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aging may contribute to improvements in motor function with a

ketogenic diet.

b-hydroxybutyrate inhibits the NLRP3 inflammasome121 and a

ketogenic diet mitigates age-related increases in pro-inflamma-

tory cytokines24; this inhibition of inflammation may play a role in

the extension of healthspan and longevity with a ketogenic diet.

Additional discussion at the meeting highlighted the importance

of isocaloric dietary approaches to determine the impact of sus-

tained ketosis independent of diet-induced obesity or weight

loss. In contrast to humans, where there is interest in ketogenic

diets inducing satiety and weight loss, level of intakemay predict

outcomes in mice as these animals may become obese when

provided ad libitum access to ketogenic diets, negating the

beneficial effects by depleting adipose-resident gd T cells and

impairing metabolic health and glucose homeostasis.122

Dr. Gino Cortopassi discussed the impact of ketosis on brain

function, including the results of four studies with carbohydrate

versus ketogenic diet interventions from 13 to 26 months of

age. Mouse brains were analyzed by RNA-seq, and these data

supported a rise in synaptic pruning with age, while the keto-

genic diet mitigated the microglial component of this pruning.

Other ketogenic diet studies of 7-month duration supported

the concept that this diet has a pro-synaptic and long-term

potentiation effect, while a short 6-week ketogenic diet

produced profound changes in hepatic gene expression and

anti-inflammatory effects in brain. Dr. Cortopassi’s group

recently identified potential ‘‘ketodrugs’’ that appear to mimic

consumption of a ketogenic diet,28 including analogs more

potent than the parent ketodrug compound.29 Such ketodrugs

have an anti-inflammatory impact in the brain of similar potency

to a ketogenic diet. Dr. Cortopassi concluded that these data

support the idea that the anti-inflammatory actions of the keto-

genic diet, b-hydroxybutyrate, and ketodrugs may underpin

the increased effects of these interventions on longevity and

functional preservation in mice.

Time-restricted feeding in rodents
TRF refers to dietary interventions that limit consumption of food

to a short daily window of time. In landmark studies, workshop

speaker Dr. Satchidananda Panda previously found that mice

were protected from isocaloric Western diet-induced metabolic

disease if they were only permitted ad libitum food access for 8 h

per day, during their active phase.41,42 In mice fed a standard

diet, short-term TRF studies did not show a significant change

in body weight, while an increase in muscle mass was often

observed. Muscle mass preservation was sometimes (but not al-

ways) observed in high-fat-fed mice on TRF.43 Long-term TRF

studies in mice fed a ‘‘standard diet’’ (or equivalent) showed an

increase in both lifespan and healthspan in C57BL/6J mice.

But CR, relative to TRF, showed better healthspan and lifespan

outcomes,56 and CR + TRF has an additive contribution to

mouse lifespan.123 Altogether, these rodent studies have high-

lighted the importance of quality, quantity, and timing of nutrition

in healthspan.

At the workshop, Dr. Amandine Chaix highlighted that the ma-

jority of previously published TRF studies were conducted in

young C57BL/6J male mice, with the effects of TRF assessed af-

ter relatively short, 8- to 12-week interventions. Dr. Chaix then

discussed recently published work investigating the effects of
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TRF in young versusmiddle-agedmice of both sexes.124 Overall,

3-month-old and 12-month-old male C57BL/6J mice showed

similar metabolic benefits from TRF. In contrast, female mice,

independently of their age, did not show a difference in body

weight changes between ad libitum-fed and TRF-fed groups.

Yet females on TRF had better glucose tolerance and reduced

hepatic steatosis, suggesting that some benefits of TRF were in-

dependent from body weight changes. This study also highlights

the critical importance of further understanding sexual dimor-

phism in diet and corresponding metabolic response in rodents

and humans. In ongoing research, Dr. Chaix is investigating the

lifelong health benefits of TRF initiated in middle-agedmale mice

upon pre-established obesity and metabolic imbalance. This

study is also examining whether TRF can increase lifespan and

sustain clock function through old age.

Dr. Zheng Chen discussed a pharmacological approach to

realizing the benefits of TRF. The Chen laboratory identified

Nobiletin, a natural polymethoxylated flavone, as a clock-

enhancing small molecule that directly activates retinoid acid re-

ceptor-related orphan receptor (ROR) in the core oscillator.36

Similar to TRF, Nobiletin confers broad beneficial effects in

various disease and aging mouse models. The benefits of Nobi-

letin include fortifying mitochondrial respiration and cardiolipin

synthesis in aging skeletal muscle37,38 and reducing Alzheimer’s

disease pathology in mouse models.39,40 During the workshop,

Dr. Chen presented data suggesting that Nobiletin and TRF

have functional synergism to improve certain key metabolites

and hormones in naturally aged mice, acting together to

strengthen circadian resilience and physiological homeostasis

during healthy aging.

Dr. Joseph Bass discussed recent work from his laboratory on

how circadian disruption alters energy balance and showed that

the response to TRF involves adipose thermogenesis. He dis-

cussed foundational work from his laboratory demonstrating

that high-fat-diet feeding causes period lengthening in mice,

demonstrating the ability of energy-dense diets to disrupt time-

keeping mechanisms in the body.125 Restricting high-fat-diet

feeding to the dark period reduced weight gain compared to re-

stricting high-fat diet to the light period, even if animals

consumed the same amount of energy in calories, highlighting

the importance of time of day of food consumption to maintain

energy balance.126 In part, this is due to decreased energy

expenditure in the light (inactive) cycle, leading to higher weight

gain in mice fed during the day. Recent investigation of the mo-

lecular mechanisms underlying these effects by the Bass labora-

tory showed that ablation of the zinc finger protein 423 (ZFP423),

specifically in adipose tissue, blunted the negative effects of

daytime high-fat-diet feeding inmice by increasing futile creatine

cycling.30 Conversely, adipocyte-specific overexpression of

ZFP423 suppressed adipocyte thermogenesis and exaggerated

weight gain even when eating occurred during the active phase

(the dark period for mice). Thus, circadian control of adipocyte

creatine metabolism drove the timing of diet-induced thermo-

genesis, and enhancement of adipocyte circadian rhythm

through overexpression of the clock activator BMAL1 (brain

andmuscle Arnt-like protein-1) amelioratedmetabolic complica-

tions during diet-induced obesity, reducing diet-induced in-

creases in weight and adiposity and improving glucose

tolerance.30
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Time-restricted feeding in flies
Dr. Girish Melkani discussed the implications of studies on the

time of eating in humans, which have shown that late-night

eaters and skipping breakfast have higher risk of heart disease

after controlling for diet and lifestyle factors.127 Aging is one of

the highest risk factors for the development of several human

diseases that are exacerbated by metabolic challenges. The

mechanistic basis of metabolic and circadian dysregulation

leading to aging and cardiometabolic disorders is largely unex-

plored. Using Drosophila as a model organism, his group has

examined the effects of TRF on heart health (Figure 1). TRF-fed

flies had reduced body weight and triglyceride content and

significantly reduced night activity, while increasing daily sleep

(Figure 1). TRF also attenuated age-related cardiac dysfunction,

and RNA-seq of hearts showed upregulated TCP chaperones

and downregulated ETC components that may contribute to

delays of age-dependent cardiac defects.31 In addition, Dr.

Melkani reported that TRF counteracted obesity-linked dysme-

tabolism and improved muscle performance by suppressing

intramuscular fat deposits, mitochondrial defects, and markers

of insulin resistance in Drosophila32 (Figure 1).

Dr. Melkani’s group has demonstrated a mechanistic basis for

the TRF-mediated benefits to muscle in diet- and genetic-

induced obesity by utilizing temporal transcriptomic data of

muscle followed by genetic validations. His group has uncov-

ered the involvement of distinct pathways in different obesity

models for TRF-mediated muscle improvement128 (Figure 1).

For example, TRF resulted in significant upregulation of Gnmt,

Sardh, and CG5955; genetic inhibition of these genes leads to

skeletal muscle dysfunction, aberrant lipid accumulation, and

loss of TRF-mediated benefits. In contrast, flies with skeletal

muscle-specific inhibition of Dgat2 retained muscle function

during aging, a result that mimicked the benefits of TRF. Further-

more, de novo purine biosynthesis appeared to be upregulated

as a consequence of diet-induced obesity, while AMPK

signaling, glycogen metabolism, glycolysis, TCA cycle, and

ETC signaling were specifically upregulated in a genetic obesity

model of TRF. TRF-mediated benefits in genetic-induced

obesity were mediated via activation of AMPK, which led to

increased ATP levels. Altogether, they identified/validated

shared and distinct pathways in the regulation of aging under

TRF.33 The findings may pave the way for future TRF studies in

cardiac and skeletal muscle, providing a natural and affordable

form of alternative intervention for managing pathophysiological

effects related to aging, metabolism, and obesity.

Benefits from intermittent feeding are not always associated

with longevity,32 and Dr. William Ja discussed historical findings

to extend lifespan inDrosophila via TRF.129 In the past few years,

new intermittent fasting regimens have been reported to extend

Drosophila lifespan, such as the 2:5 diet, in which flies are fed for

two consecutive days per week followed by 5 days of fasting,130

as well as an intermittent fasting regimen (iTRF) that drives

longevity through circadian autophagy.44 At least with iTRF,

longevity required matching of food access cycles to natural

feeding rhythms, highlighting the importance of precise mea-

surements of feeding behavior and its regulation. Diverse

methods to quantify food intake in flies were discussed,

including the use of an automated liquid feeding assay (Capillary

Feeder, CAFE), which can provide more precise metrics,
including meal frequency, timing, and satiety ratio to quantify

how satisfying each type of diet is to flies.45 Using these

methods, Dr. Ja showed that flies ate more frequently during

the light period, consistent with previous studies,131 and that

there was strong rhythmicity in food intake. They also observed

fly strains with alternative, ‘‘two-peak’’ feeding rhythms. Using

genetic approaches to knockout clock function in the gut specif-

ically, they observed disruption of feeding behaviors but intact

locomotor activity. His laboratory is now examining whether

different feeding rhythms might alter the response to inter-

ventions.

Dr. Mimi Shirasu-Hiza discussed night feeding, which in hu-

mans is associated with a multitude of metabolic diseases. Her

laboratory tested many different dietary regimens before identi-

fying a dietary intervention, iTRF, that promoted longevity and

healthspan in flies.44 iTRF consists of a 6-h morning feeding win-

dow, followed by fasting for 20 h, and then refeeding for 28 h

before fasting for an additional 20 h. Applying iTRF from 10 to

40 days of age extended lifespan by 15%–20%. Consistent

with previous work,130 iTRF applied too early or extended past

day 45 was found to be deleterious for fly health. While the

iTRF experiments were primarily conducted in female flies, Dr.

Shirasu-Hiza also observed similar, slightly more modest bene-

fits for males (e.g., 10%–15% lifespan extension).

iTRF delayed several age-associated phenotypes, including

climbing activity decline and intestinal dysfunction. iTRF was

distinct fromCR, as the average food intake during iTRF is higher

than that in CR flies; importantly, the effects of iTRF are additive

with CR for life extension. iTRF also enhanced circadian gene

expression compared to ad libitum-fed controls, and proper

clock function was necessary for the effects of iTRF-mediated

life extension. Highlighting the importance of circadian timing

in the health benefits of TRF, only night-centered TRF extended

lifespan while day-centered TRF did not. Moreover, night-spe-

cific expression of atg1 on an ad libitum diet was sufficient for

an extension of lifespan, similar to iTRF-mediated lifespan exten-

sion, and the lifespan extension caused by night-specific atg1

expression was not further extended by iTRF. Importantly,

day-specific atg1 expression was not sufficient to extend

lifespan. These results suggest that the health benefits of

circadian-aligned (night-centered) TRF are mediated by

enhancement of both circadian clock function and autophagy.

Intermittent fasting
Dr. Rajat Singh discussed mechanisms of metabolic remodeling

during intermittent fasting, focusing on interactions between

food, timing, and autophagy in mice. He described an isocaloric

intervention, in which animals were fed two times a day in the

light cycle (TAD); his lab found that autophagy activation and

flux increased in a biphasic manner following fasting periods be-

tween the twomeals compared to regular ad libitummice, where

autophagy increased only at the end of the light cycle and stayed

low during the dark cycle.34 Increased levels of FGF21 correlated

with the first autophagy phase, during the light cycle in TAD an-

imals, but interestingly did not with the second phase in the dark

cycle. Conversely, insulin levels increased following the second

meal administered right before the dark cycle in the TAD animals,

but not following the first light cycle meal. Coordinated activation

of autophagy in the hypothalamus-liver and hypothalamus-fat
Cell Metabolism 35, July 11, 2023 9
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axes appeared to be required for remodeling in these peripheral

tissues as demonstrated by loss of these benefits in tissue-spe-

cific autophagy-deficient mice. Collectively, these findings sug-

gest that the two-meals-a-day regimen can segregate anabolic

and catabolic processes andmodulate autophagy inmultiple tis-

sues to drive systemic metabolic benefits.35

Dr. Singh then discussed new work from his lab comparing

TAD feeding during daytime versus twice a day feeding in the

dark cycle (TAN). His laboratory found that nocturnal meal

spacing resulted in greater weight loss and lower adiposity

compared to the daytime twice a day group. Interestingly, TAN

feeding remodeled subcutaneous fat and in particular vascularity

and nerve density. Post-prandially, TAN-fed mice had consis-

tently increased energy expenditure; while brown fat and epidid-

ymal WAT (eWAT) activation did not drive this weight loss, it may

be driven by beiging of iWAT. Collectively, subcutaneous tissue

remodeling and increased energy expenditure regulated body

composition changes in TAN-fed mice. There may also be a po-

tential neuronal humoral axis driven by TAN feeding that induces

browning and possibly enervation in the subcutaneous fat depot.

It remains to be seen how humans may respond to the once

versus twice a day feeding as opposed to more frequent but

lower calorie meals.

Dr. Maria Mihaylova discussed key early findings of dietary

effects on aging and, in particular, epithelial biology. She next

talked about the importance of adult stem cells inmaintaining tis-

sue homeostasis and function and how they are impacted by

aging.46,132 One of the key efforts of her research is understand-

ing nutrient sensing and utilization across different tissues and

cell types. The remainder of her talk focused on mammalian in-

testinal stem and progenitor cells and their response to nutrient

perturbations. Intestinal stem cells can directly sense nutrient

deprivation in the form of fasting47 and adapt to CR over

time.48 Her work stemmed from biochemical analysis of nutrient

responses in crypts enriched in stem and progenitor cells, which

responded robustly to nutrient deprivation when mice were sub-

jected to 16–24 h of fasting. She also stated the necessity of

understanding how fasting affects adult stem cells, given that

many of the life-extending CR regimens entrain mice to consume

food in short periods of time, while the reminder of the time mice

are subjected to extended periods of fasting.

Dr. Mihaylova discussed howmammalian intestinal stem cells

induced a fatty acid oxidation program in response to fasting,

which allowed them to switch their metabolism to better utilize

exogenous lipids. Interestingly, fasting primed stem and progen-

itor cells to proliferate better in nutrient-rich culture conditions,

which mimics a refeeding state following the fast. This may also

be the case in vivo, where stem and progenitor cells may be

primed to proliferate faster upon refeeding, perhaps leading to

extension of villi for more effective nutrient absorption under

nutrient-rich states. Along with collaborators, Dr. Mihaylova

showed that with age stem cell function declines and stem and

progenitor cell proliferation is also reduced, leading to decreased

epithelial turnover and worsened responses to tissue injury. She

hypothesized that some of the age-dependent effects may result

in part due tometabolic changesand inflexibility in agedstemand

progenitor cells compared to young stem cells. The Mihaylova

laboratory, with collaborators, is now adapting several ap-

proaches tomeasure cellularmetabolic signaturesandheteroge-
10 Cell Metabolism 35, July 11, 2023
neity at or near the single-cell level. She hopes that in the future,

these approacheswill help capture thediverse cellular responses

to dietary interventions across young and aged tissues.
Time-restricted feeding studies in humans
Dr. Satchidananda Panda closed out the workshop by giving an

overview of opportunities and challenges in leveraging the

concept of TRF to increase human healthspan. Many (but not

all) studies, carried out in sensitized conditions of feeding

energy-dense diet (high-fat, high-sucrose, high-fructose, etc. di-

ets), found that TRF prevented or reduced the risks for many

age-related chronic diseases that affect diverse organ systems

and brain regions.43 In addition, therapeutic or regression

studies in middle-aged mice or genetic models of metabolic or

age-related diseases have yielded many benefits of TRF. TRF

also increased survival from LPS challenge.124

TRF may potentially benefit humans who spread their calorie

intake over a long period of the 24-h day. As TRF is based on

the concept of circadian rhythm, which is affected by changes

in eating time,133 specifically breakfast or dinner time, it is neces-

sary to assess eating time over a few days. However, the current

gold standardmethods for collecting human nutrition data—24 h

dietary recall and food frequency questionnaires—were not de-

signed to capture daily eating window and day-to-day variations

reliably. So new methods or survey instruments are needed to

capture human eating time behavior.

The Panda laboratory developed a simple app—myCirca-

dianClock—to determine the eating window from several

days of self-recorded meal timing logs. They used the mid-

95th percentile eating window calculated from at least 1 week

(preferably 2–3 weeks) of food records, which can account

for habitual and day-to-day mealtime variations. They found

that adults working regular hours had a 95% eating window

of �14 h and 45 min, and only <10% of adults had an eating

window of less than 12 h.58,59 By combining app data with ac-

tigraphy-based sleep measurement, they found that 80% of

adults ate or drank energy-containing food/beverages within

1 h of waking up, and 50% of adults ate or drank within 2 h

before bedtime. Therefore, app-based multiple-day food re-

cords integrating sleep time are needed for collecting circa-

dian-relevant meal timing in humans.

Several pilot or feasibility studies have shown that short-term

(<12 weeks) TRF with a target eating window ranging from 4 to

12 h was feasible among healthy overweight, obese, or those

with metabolic diseases.60 Most of these studies reported

some health benefits relating to improvements in metabolic

health: modest weight loss and improved glucose tolerance,

blood pressure, plasma lipids, and markers of chronic inflamma-

tion. However, TRF with 4–6 h target windows produced mild to

moderate adverse events and may not have long-term adher-

ence. Although the 8 h target window appeared doable in 3- to

6-month studies, objective data on eating time were not avail-

able for most studies. In one study,61 where objective data

were available, participants started with 8 h, but more than

50% drifted toward 10 h by the end of 3 months of intervention.

In 10 h TRF, participants adhered for 5–6 days a week, and long-

term adherence (at 1 year; 9 months after study completion) was

�70%.62 12 h TRF did not produce significant improvement in
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cardiometabolic disease risk factors.63 Altogether, 8–10 h TRF

may offer a pragmatic eating window for long-term adherence.

Although the goal of TRF in humans is not explicitly to reduce

energy intake, TRF of 10 h or less also resulted in inadvertent cal-

orie reduction between 5% and 20%. In addition, some TRF

studies also resulted in an improvement in diet quality and a

reduction in snacking.63,64 However, health improvements in

TRF studies appeared to be disproportionately larger than those

expected from the observed weight loss62 or no change in

weight.134

As TRF inadvertently causes CR in humans and rodent CR

studies inadvertently include TRF, an obvious question is

whether humans in CR studies also inadvertently adopt TRF.

A systematic analysis of multiple days of meal records from

the 2-year-long CR study CALERIE-II found no significant

change in the eating window65; their baseline eating window

was >12 h andwas not significantly reduced by CR. These health

benefits found in TRF studies resulted when the participants’

baseline eating window was 12 h or longer and they reduced

their eating window by >3 h. The findings raise the question of

whether adherence to CR and the benefits of CR can be

improved among humans who eat >12 h by incorporating 8–

10 h TRF as a tool to follow CR.

SOLUTIONS AND CHALLENGES

There is a growing awareness that the long-held paradigm that

‘‘a calorie is a calorie is a calorie’’ is misleading, and that calories

from different macronutrient sources impact metabolism and

health beyond their simple caloric value. While this has previ-

ously been shown to be true for carbohydrates and fats,135

recent work has shown that protein has a critical impact, with

low-protein, high-carbohydrate diets promoting metabolic

health and longevity in rodents and low-protein diets promoting

leanness, glycemic control, and insulin sensitivity in humans.18,86

Presentations at the workshop further highlighted this concept

through discussions on how energy intake, the precisemacronu-

trient composition of the diet, and daily eating time regulate

healthy aging in model organisms ranging from the humble fruit

fly up to mice, nonhuman primates, and even humans. Following

the workshop, participants listed many important open ques-

tions relating to dietary interventions in aging and age-related

diseases that are summarized in part in Box 1 and also further

discussed below. Many of these open questions relate to chal-

lenges that will need to be overcome in order to translate the

research discussed at the workshop to the clinic (Figure 2).

The workshop participants all acknowledged the absolute

need for more systematic assessment of the effect of sex and

genetic background as key biological variables that could influ-

ence the responses to health-promoting diet interventions. As

the field accumulates a multitude of diet intervention studies

and accompanying datasets, it will be necessary to create effec-

tiveways for big data and inter-study comparisons to account for

a multitude of variables. Indeed, it was previously shown that the

sex of the animal influenced the response to both CR and PR in

mice.92,136 In the work presented at this workshop, restriction of

BCAAs and isoleucine was shown to have stronger effects on the

frailty and longevity of male than female mice, highlighting the

importance of studying interventions in both sexes. Genetic
background has also recently been shown to be critical in the

response to a panel of different healthy diets as well as CR,

PR, and high-fat-diet feeding.73,92,136–138 Harnessing the power

of natural genetic variation creates a unique opportunity to gain

new insight into the physiological and molecular mechanisms

that control the response to dietary components. It remains to

be seen how the response to dietary interventions will differ in

the heterogeneous human population, as well as across the

age spectrum.

There are significant unanswered questions regarding how di-

etary needs and the efficacy of interventions may change with

age, and this is a challenge that will need to be met in order to

successfully translate the interventions explored here to the

clinic. Interventions that are only effective early in life are much

less likely to be of broad clinical use as interventions that are

effective starting later in mid-life or in old age. CR, for example,

is noticeably less effective in aged mice than in young ani-

mals.139 A particular issue for PR is that aging in humans is asso-

ciated with sarcopenia and frailty, and increasing—not

decreasing—dietary protein in the elderly is widely recommen-

ded to preserve muscle mass.140–142 It will therefore be

important to study the long-term effect of these novel dietary in-

terventions on muscle mass, quality, and frailty, as initiating PR

or restriction of specific amino acids later in life could potentially

be deleterious. While initiating PR or restriction of specific amino

acids starting in old age has not been widely studied, BCAA re-

striction in mice starting at 16 months of age has not been

observed to increase frailty,19 while PR starting around

22 months of age in mice resulted in a loss of lean mass in

males.92 Future studies inmice and in humans should thoroughly

assess both the positive and negative benefits of dietary inter-

ventions starting at a wide array of ages.

Another important future question is understanding how inter-

actions between macronutrients may contribute to the ultimate

effects of these macronutrients on healthy aging. For example,

it was recently shown that the type of carbohydrate is critical

to the metabolic benefits of low-protein, high-carbohydrate di-

ets,143 and it is logical to assume that both carbohydrate and

fat quality, as well as energy density, will have effects on healthy

aging even if the impact of protein quality and quantity domi-

nates. Micronutrients may also have an important role: in

Drosophila it was recently shown that supplementation with die-

tary cholesterol—an essential micronutrient in this species—res-

cues the negative effects of a high-protein, low-carbohydrate

diet on longevity.144

Speakers also discussed technical issues that may impact

both the outcome and interpretation of studies. As discussed

above, many of the effects of CR on healthspan and longevity

appear to require the imposed prolonged fasting period between

meals that CR-fed mice are incidentally subject to due to once-

per-day feeding paradigms. The implementation of automated

food dispensers in animal studies has already led to important

new findings71,72,123 and may enable some of these effects to

be deconvoluted in the future. Studies of CR in humans may

similarly need to control for the period of time in which calories

are consumed, as spreading the calories out over three meals

a day may prove to be much less effective than one potentially

larger meal once per day. A recent analysis of data from the

CALERIE study found that while the reduction in calorie intake
Cell Metabolism 35, July 11, 2023 11
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explained only 41% of the variance in weight loss between par-

ticipants, eating interval length and timing of the first and last

meals also significantly contributed to the variance in weight

loss between study participants.65

Another very important potential confounder of diet studies is

housing temperature; for instance, Dr. Bass described in this

workshop how feeding during the light phase at thermoneutrality

further increased weight gain compared to dark phase feeding.

Most studies of mice are conducted at room temperature

(22�C), which is cool for small rodents with little subcutaneous

fat and thus leads to thermal stress and activation of the sympa-

thetic nervous system. Conducting studies at thermoneutrality

can reduce heightened cold-induced sympathetic activity and

thereby unmask crucial, yet missing, regulators of dietary adap-

tation. Since humans are homeothermic andmay not be typically

subjected to thermal stress, insight gained from thermoneutrality

experiments may provide a more direct bridge toward under-

standing the interplay between diet and physiology across

species. More research is needed to understand exactly how

much thermal stress rodents are subjected to at room tempera-

ture. It is also unknown how the thermal stresses humans are

subject to vary with seasons, local climate, and socioeconomic

status. Recent work has shown that other factors, such as rela-

tive humidity, can also alter metabolic stress and impact the

response to diet.145

TRF studies have also highlighted the importance of metabolic

regulation, nutrition timing, and health in the context of circadian

alignment. Indeed, TRF studies suggest that even under isoca-

loric and identical macronutrient composition feeding, the timing

of food intake can affect many parameters of metabolic mea-

surements and health. A better understanding of the relationship

between clock and metabolism will be crucial to optimize thera-

peutic approaches in free-living conditions, as well as care in

hospitals where constant lighting or nutrition, such as parenteral

nutrition, can result in circadian disruption. This dissociation be-

tween the light cycle and nutrition provided in the opposite phase

violates alignment between clocks and feeding, which may lead

to inflammatory conditions and insulin resistance. As we go for-

ward, considering how and when both geroprotective diets and

pharmaceuticals are best delivered relative to the circadian cycle

should be tested in animal models, as this may be key to identi-

fying the most efficacious way to promote human health.

Although a number of different nutrient-sensitive pathways

have been studied (Figure 3) in the context of CR, more molecu-

lar changes and potential mechanisms underlying TRF need to

be explored, with an emphasis not just on the effects on the

whole organism, but with an emphasis on tissue- and cell-spe-

cific effects and mechanisms. As but one potential mechanism

not discussed here, recent studies have suggested that NAD+

metabolism may be a key regulator of the response to TRF and

intermittent fasting, acting via the regulation of the sirtuin family

of NAD+-dependent deacetylases.146,147 The effect of these

types of dietary intervention on hunger, and thus stress, must

also be considered, although a recent analysis of data from the

CALERIE study suggests perceived hunger is not significantly

increased over the long-term in non-obese humans on a CR

regimen.148 TRF and other interventions might also potentially

interact with geroprotective compounds, and little is known

about the potential additive, synergistic, or even deleterious ef-
12 Cell Metabolism 35, July 11, 2023
fects of combining such interventions. Initial animal studies

have implicated several physiological mechanisms, including,

but not limited to, autophagy, adipose tissue thermogenesis,

integrative stress response, proteostasis, and mitochondria

function.42,124,149 However, a comprehensive assessment of

the effects of TRF across many tissues in mice—let alone hu-

mans—remains to be determined. The pleiotropic effects of

TRF on multiple organ systems open new research avenues to

identify tissue-specific and inter-organ communication mech-

anisms.

The combination of TRF and CR in health indices is an active

research area. In a weight loss treatment clinic in the US, when

obese individuals were advised to follow CR, the addition of

8 h TRF resulted in a further reduction in energy intake and

improved cardiometabolic risks and brain health.150 However,

in another CR study in China, where the baseline eating window

was 10 h, reducing the eating window to 8 h or following a

habitual eating window of 10 h did not produce any significantly

different health effects.151 These results suggest TRF may

benefit individuals who have a baseline eating window of >12 h.

An important caveat when discussing all of these interventions

is that the effectiveness of these dietary and timing regimens on

healthy aging and longevity has not been tested in humans.

Indeed, this is even true in the case of CR—while the CALERIE

study was very ambitious, lifespan was not an outcome tracked

in this 2-year-long study. All studies of TRF, PR, and similar inter-

ventions thus far have been even shorter. Particularly in the

absence of reliable biomarkers of aging, a major challenge will

be showing that interventions that work well in flies and mice

will also extend healthy aging in nonhuman primates and, even-

tually, humans who may have complex regional or cultural die-

tary preferences, supplement intake, and variable day-to-day

energy balance.

Finally, there has been great interest for decades in designing

small molecular mimetics of some of the effects of CR. While it

remains to be seen if this is truly possible, small molecule mi-

metics of TRF, such as Nobiletin, suggest that small molecules

mimicking at least portions of CR—in this case, strengthening

circadian rhythms—are indeed possible. It is exciting to start

considering the possibility of future individualized precision nutri-

tion in which an optimized combination of dietary, drug, and

timing considerations will be tailored to individual patients for

successful improvement in health and longevity.

CONCLUSIONS

A recent NIH workshop on ‘‘Dietary Composition, Time-

Restricted Feeding and Associated Metabolic Reprogramming

in Healthspan and Longevity Regulation’’ brought together

some of the leading experts who are investigating how dietary

composition and restricting feeding times can promote healthy

aging and even increase longevity in model organisms, and

who discussed some of the initial results on translating findings

from these studies from the bench to the dining table and the

clinic. Recent results in this rapidly moving field have overthrown

the century-old paradigm that the effects of dietary components

are solely mediated by their caloric value; instead, the new para-

digm is that ‘‘a calorie is more than just a calorie,’’ with calories

from different amino acids, dietary carbohydrates, or consumed
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at different times of day having different metabolic andmolecular

impacts. Further research in this area is critical to understanding

not only the metabolic effects of distinct macronutrients, but to

gain new insights into the long-standing problem of identifying

the molecular mechanisms by which CR promotes longevity.

Many of these interventions are already being translated into hu-

mans in the dining room or the metabolic kitchen, but identifying

molecular mechanisms that allow us to mimic the effects of

restricted diets, and to understand why the effects of a given

diet vary between people, will allow the development of new

classes of geroprotective agents.
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26. Zhou, Z., Vidales, J., González-Reyes, J.A., Shibata, B., Baar, K., Rut-
kowsky, J.M., and Ramsey, J.J. (2021). A 1-month ketogenic diet
increased mitochondrial mass in red gastrocnemius muscle, but not in
the brain or liver of middle-aged mice. Nutrients 13, 2533. https://doi.
org/10.3390/nu13082533.

27. Wallace, M.A., Aguirre, N.W., Marcotte, G.R., Marshall, A.G., Baehr,
L.M., Hughes, D.C., Hamilton, K.L., Roberts, M.N., Lopez-Dominguez,
J.A., Miller, B.F., et al. (2021). The ketogenic diet preserves skeletal mus-
cle with aging in mice. Aging Cell 20, e13322. https://doi.org/10.1111/
acel.13322.

28. Tomilov, A., Allen, S., Hui, C.K., Bettaieb, A., and Cortopassi, G. (2018).
Idebenone is a cytoprotective insulin sensitizer whose mechanism is Shc
inhibition. Pharmacol. Res. 137, 89–103. https://doi.org/10.1016/j.phrs.
2018.09.024.

29. Hui, C., Tomilov, A., Garcia, C., Jiang, X., Fash, D.M., Khdour, O.M.,
Rosso, C., Filippini, G., Prato, M., Graham, J., et al. (2020). Novel idebe-
none analogs block Shc’s access to insulin receptor to improve insulin
sensitivity. Biomed. Pharmacother. 132, 110823. https://doi.org/10.
1016/j.biopha.2020.110823.

30. Hepler, C., Weidemann, B.J., Waldeck, N.J., Marcheva, B., Cedernaes,
J., Thorne, A.K., Kobayashi, Y., Nozawa, R., Newman, M.V., Gao, P.,
et al. (2022). Time-restricted feeding mitigates obesity through adipocyte
thermogenesis. Science 378, 276–284. https://doi.org/10.1126/science.
abl8007.

31. Gill, S., Le, H.D., Melkani, G.C., and Panda, S. (2015). Time-restricted
feeding attenuates age-related cardiac decline in Drosophila. Science
347, 1265–1269. https://doi.org/10.1126/science.1256682.
14 Cell Metabolism 35, July 11, 2023
32. Villanueva, J.E., Livelo, C., Trujillo, A.S., Chandran, S., Woodworth, B.,
Andrade, L., Le, H.D., Manor, U., Panda, S., and Melkani, G.C. (2019).
Time-restricted feeding restores muscle function in Drosophila models
of obesity and circadian-rhythm disruption. Nat. Commun. 10, 2700.
https://doi.org/10.1038/s41467-019-10563-9.

33. Livelo, C., Guo, Y., and Melkani, G.C. (2022). A skeletal muscle-centric
view on time-restricted feeding and obesity under various metabolic
challenges in humans and animals. Int. J. Mol. Sci. 24, 422. https://doi.
org/10.3390/ijms24010422.

34. Martinez-Lopez, N., Tarabra, E., Toledo, M., Garcia-Macia, M., Sahu, S.,
Coletto, L., Batista-Gonzalez, A., Barzilai, N., Pessin, J.E., Schwartz,
G.J., et al. (2017). System-wide benefits of intermeal fasting by auto-
phagy. Cell Metab. 26, 856–871.e5. https://doi.org/10.1016/j.cmet.
2017.09.020.

35. Martinez-Lopez, N., Garcia-Macia, M., Sahu, S., Athonvarangkul, D., Lie-
bling, E., Merlo, P., Cecconi, F., Schwartz, G.J., and Singh, R. (2016).
Autophagy in the CNS and periphery coordinate lipophagy and lipolysis
in the brown adipose tissue and liver. Cell Metab. 23, 113–127. https://
doi.org/10.1016/j.cmet.2015.10.008.

36. He, B., Nohara, K., Park, N., Park, Y.S., Guillory, B., Zhao, Z., Garcia,
J.M., Koike, N., Lee, C.C., Takahashi, J.S., et al. (2016). The small mole-
cule nobiletin targets the molecular oscillator to enhance circadian
rhythms and protect against metabolic syndrome. Cell Metab. 23,
610–621. https://doi.org/10.1016/j.cmet.2016.03.007.

37. Nohara, K., Mallampalli, V., Nemkov, T., Wirianto, M., Yang, J., Ye, Y.,
Sun, Y., Han, L., Esser, K.A., Mileykovskaya, E., et al. (2019). Nobiletin
fortifies mitochondrial respiration in skeletal muscle to promote healthy
aging against metabolic challenge. Nat. Commun. 10, 3923. https://
doi.org/10.1038/s41467-019-11926-y.

38. Nohara, K., Kim, E., Wirianto, M., Mileykovskaya, E., Dowhan, W., Chen,
Z., and Yoo, S.H. (2020). Cardiolipin synthesis in skeletal muscle is rhyth-
mic and modifiable by age and diet. Oxid. Med. Cell. Longev. 2020,
5304768. https://doi.org/10.1155/2020/5304768.

39. Kim, E., Nohara, K., Wirianto, M., Escobedo, G., Jr., Lim, J.Y., Morales,
R., Yoo, S.H., and Chen, Z. (2021). Effects of the clock modulator nobile-
tin on circadian rhythms and pathophysiology in female mice of an Alz-
heimer’s disease model. Biomolecules 11, 1004. https://doi.org/10.
3390/biom11071004.

40. Wirianto, M., Wang, C.Y., Kim, E., Koike, N., Gomez-Gutierrez, R., No-
hara, K., Escobedo, G., Jr., Choi, J.M., Han, C., Yagita, K., et al.
(2022). The clock modulator nobiletin mitigates astrogliosis-associated
neuroinflammation and disease hallmarks in an Alzheimer’s disease
model. FASEB J. 36, e22186. https://doi.org/10.1096/fj.202101633R.

41. Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E.A., Gill,
S., Leblanc, M., Chaix, A., Joens, M., Fitzpatrick, J.A.J., et al. (2012).
Time-restricted feeding without reducing caloric intake prevents meta-
bolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860.
https://doi.org/10.1016/j.cmet.2012.04.019.

42. Chaix, A., Zarrinpar, A., Miu, P., and Panda, S. (2014). Time-restricted
feeding is a preventative and therapeutic intervention against diverse
nutritional challenges. Cell Metab. 20, 991–1005. https://doi.org/10.
1016/j.cmet.2014.11.001.

43. Chaix, A., Manoogian, E.N.C., Melkani, G.C., and Panda, S. (2019). Time-
restricted eating to prevent and manage chronic metabolic diseases.
Annu. Rev. Nutr. 39, 291–315. https://doi.org/10.1146/annurev-nutr-
082018-124320.

44. Ulgherait, M., Midoun, A.M., Park, S.J., Gatto, J.A., Tener, S.J., Siewert,
J., Klickstein, N., Canman, J.C., Ja, W.W., and Shirasu-Hiza, M. (2021).
Circadian autophagy drives iTRF-mediated longevity. Nature 598,
353–358. https://doi.org/10.1038/s41586-021-03934-0.

45. Murphy, K.R., Park, J.H., Huber, R., and Ja, W.W. (2017). Simultaneous
measurement of sleep and feeding in individual Drosophila. Nat. Protoc.
12, 2355–2366. https://doi.org/10.1038/nprot.2017.096.

46. Keller, A., Temple, T., Sayanjali, B., and Mihaylova, M.M. (2021). Meta-
bolic regulation of stem cells in aging. Curr. Stem Cell Rep. 7, 72–84.
https://doi.org/10.1007/s40778-021-00186-6.

https://doi.org/10.1038/s43587-023-00416-y
https://doi.org/10.1038/s43587-023-00416-y
https://doi.org/10.1016/j.celrep.2016.05.092
https://doi.org/10.1016/j.celrep.2016.05.092
https://doi.org/10.1038/s43587-020-00006-2
https://doi.org/10.1016/j.cmet.2021.03.025
https://doi.org/10.1016/j.cmet.2021.03.025
https://doi.org/10.1101/2022.10.06.511051
https://doi.org/10.1101/2022.10.06.511051
https://doi.org/10.1113/JP283261
https://doi.org/10.1111/acel.12238
https://doi.org/10.1111/acel.12238
https://doi.org/10.1016/j.cmet.2017.08.005
https://doi.org/10.1016/j.cmet.2017.08.005
https://doi.org/10.1111/acel.13706
https://doi.org/10.3390/nu13082533
https://doi.org/10.3390/nu13082533
https://doi.org/10.1111/acel.13322
https://doi.org/10.1111/acel.13322
https://doi.org/10.1016/j.phrs.2018.09.024
https://doi.org/10.1016/j.phrs.2018.09.024
https://doi.org/10.1016/j.biopha.2020.110823
https://doi.org/10.1016/j.biopha.2020.110823
https://doi.org/10.1126/science.abl8007
https://doi.org/10.1126/science.abl8007
https://doi.org/10.1126/science.1256682
https://doi.org/10.1038/s41467-019-10563-9
https://doi.org/10.3390/ijms24010422
https://doi.org/10.3390/ijms24010422
https://doi.org/10.1016/j.cmet.2017.09.020
https://doi.org/10.1016/j.cmet.2017.09.020
https://doi.org/10.1016/j.cmet.2015.10.008
https://doi.org/10.1016/j.cmet.2015.10.008
https://doi.org/10.1016/j.cmet.2016.03.007
https://doi.org/10.1038/s41467-019-11926-y
https://doi.org/10.1038/s41467-019-11926-y
https://doi.org/10.1155/2020/5304768
https://doi.org/10.3390/biom11071004
https://doi.org/10.3390/biom11071004
https://doi.org/10.1096/fj.202101633R
https://doi.org/10.1016/j.cmet.2012.04.019
https://doi.org/10.1016/j.cmet.2014.11.001
https://doi.org/10.1016/j.cmet.2014.11.001
https://doi.org/10.1146/annurev-nutr-082018-124320
https://doi.org/10.1146/annurev-nutr-082018-124320
https://doi.org/10.1038/s41586-021-03934-0
https://doi.org/10.1038/nprot.2017.096
https://doi.org/10.1007/s40778-021-00186-6


ll
Review

Please cite this article in press as: Mihaylova et al., When a calorie is not just a calorie: Diet quality and timing as mediators of metabolism and healthy
aging, Cell Metabolism (2023), https://doi.org/10.1016/j.cmet.2023.06.008
47. Mihaylova, M.M., Cheng, C.W., Cao, A.Q., Tripathi, S., Mana, M.D., Ba-
uer-Rowe, K.E., Abu-Remaileh, M., Clavain, L., Erdemir, A., Lewis, C.A.,
et al. (2018). Fasting activates fatty acid oxidation to enhance intestinal
stem cell function during homeostasis and aging. Cell Stem Cell 22,
769–778.e4. https://doi.org/10.1016/j.stem.2018.04.001.
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